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Abstract A polymer folding model on h e  square lattice is constructed with attractive contact 
interactions of strength 1/c2, 0 < c 1. The corresponding model on a dynamical random 
lattice. with freely fluctuating coordination number at each vertex, is formulated as a random 
twomaf ix  model and an expression for the p ~ t i o n  function of a length-L chain is derived. 
Numerical estimates and analytical evaluation for L + m show a third-order collapse transition 
at e = fi - I .  Geometrical critical exponents are computed in each phase and interpreted. 
The KdLhnik-Polyakov-Zamolodchkov two-dimensional quantum gravity scaling relations are 
used to predict h e  corresponding behaviour on the regular lattice, which lies in a different 
universality class from the percolation Q-point of Duphtier and Saleur. 

1. Introduction 

A long polystyrene chain molecule in a solvent undergoes a coil-to-globule 'kansition [l] 
at a finite temperature T = 0 due to attractive interactions between different parts of 
the polymer. Many theoretical techniques have been developed to describe this and other 
processes of macromolecular folding [2], in particular use has been made of self-interacting 
random walks on lattices such as the honeycomb lattice [3] and Sierpinski fractals [4]. In 
this paper a model consisting of folding chains with contact interactions is constructed 
on the two-dimensional square lattice. In order to study the model it is reformulated 
on the ensemble of two-dimensional simplicial Iattices with random fluctuations of the 
local intrinsic curvature, which appear in the study of two-dimensional quantum gravity 
[5,6]. Statistical mechanics on lattices in this ensemble represents a dynamical (annealed 
rather than quenched) average over a certain class of fractals. Although an apparently 
more complicated problem, the advantage is that such statistical mechanics problems are 
often exactly solvable using random matrix models [6] ,  which yield expressions for the 
thermodynamic and some of the geometrical quantities of interest. The results obtained can 
be used to infer the corresponding behaviour on a regular two-dimensional lattice, since in 
all of the many solved examples the qualitative phase structure of such statistical systems 
is the same. Moreover, when the system is conformally invariant on the regular lattice, 
there are well known techniques for relating critical exponents to those of the system on' 
the fluctuating lattice [7]. 

The organization and main results of this paper are as follows. In the next section 
the polymer model is defined on a square lattice and its relation to other models which 
use a different microscopic defintion of contact is noted. The dynamical random square 
lattice is then introduced. Section 3 explains the random matrix representation and section 4 
describes the standard procedure for solving this matrix model using orthogonal polynomials. 
In section 5 the properties of a single polymer are studied, although the construction in 
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sections 3 and 4 is valid for a finite polymer fugacity, establishing the exact temperature 
T = T, of a third-order collapse transition. By expanding about T = T, and T = 00, the 
supposedly universal exponent a in the asymptotic number of configurations of a length 
L -+ 00 polymer, - LQebc, is determined to be Q = -5/2 for T -+ 00 and T -+ T: 
(and presumably for all T > Tc) while a = -3/2 for T = T,. The asymptotic behaviour 
in the T c Tc phase is more subtle but a value a = -1 is obtained for T + T;. An 
attempt to understand the charateristic geometrical behaviour implied by these results is 
made in section 6 by calculation of the dimensions of the scaling polymer 'star' operators. 
The phase structure and scaling dimensions on a fixed regular lattice are given using the 
Knizhnik-Polyakov-Zamolodchikov (Kpz) scaling relation [7]. It is concluded that T T, 
and T = T, correspond to the standard dilute and dense [8] phases respectively of a self- 
avoiding walk in the plane. The case T c T, is less clear but there is evidence that it entails 
an ultra-compact phase whereby the lattice is filled with both polymer and contact points. 
In any case the collapse transition appears to be in a different universality class from the 
percolating cluster @-point in [3];  the microscopic definition of contact used in this paper 
seems to cause a rather more severe collapse. Conclusions are summarized in section 7 and 
a simple co-polymer model with random sequencing of n(+) and n(4) monomers of types 
+ and 4 respectively, together with a fugacity for the ratio n(4) /n(@) is formulated in an 
appendix and solved with no extra work. 

2. Polymer model 

The polymer model is b t  defined on a fixed square lattice. A polymer chain of L steps is 
a random walk on the sides (links) of squares which cannot cross itself (excluded volume), 
but can occupy a given link any number of times. Examples of allowed and disallowed 
configurations are illustrated in figure I .  Two or more steps of the polymer ocuppying the 
same link of the square lattice incur a contact interaction. The single polymer partition 
function is the sum over all configurations of the polymer of length L with a weight for 
multiple occupation of each occupied link i given by c~-*" ' (~ ) ,  where w ( i )  is the number 
of steps occupying link i and 0 < c 6 1 is a an attractive contact coupling. Note that 
this defintion of contact differs from those often used in studies of self-avoiding random 
walks which cannot use a given link more than once. The one employed here is certainly a 
less physical model of the steric repulsion of polymers but leads to an analytically tractable 
random matrix theory later. 

For the fixed regular square lattice each vertex is surrounded by s = 4 squares. If 
s < 4 (s 4) at a vertex the two-dimensional lattice would be intrinsically curved at 
that vertex, with positive (negative) Gaussian curvature. For the dynamical random planar 
lattice s is allowed to be a freely fluctuating independent variable at each vertex, subject 
only to a fixed total number of A squares in the surface say. In other words the ensemble 
of random fluctuating lattices is obtained by gluing pairwise along links, A squares each 
of link length 6 say, in all possible ways so as to form an QbstI'QCf surface with spherical 
topology say (figure 2). A plays the role of an infrared cutoff on the size of the lattice. The 
polymer is a random walk on links of squares as before. More generally one can introduce 
chemical potentials r and g conjugate to the number of polymers n and number of squares 
A respectively. After multiplying by SL, the partition function is 

z =  c r g A H ( A ,  6, n. L) (1) 
! i M . A  

where 6 = C i ( 2 w ( i )  - 2)  and H is the number of configurations of n polymers, each of 
length L,  with 6 / 2  contacts, on all possible surfaces made from A squares with spherical 



Figure 1. (i) Allowed configurations of the polymer on a square lattice. The double occupation 
of a link at 'a' and 'b' for example incurs a contact weight 112. Point 'd' is not counted as a 
contact. (ii) The polymer is not allowed to cross itself, as at 'e'. 

Figure 2. A portion of a two-dimensional random square lattice (dotted lines). The full lines 
wnstmct the dual graph given by the Feyomao diagram expansion of the random mafrix model. 

topology. If one imagines L bonds along each side of the polymer which either connect 
it to a lattice square or directly to another part of the polymer, with the normalization of 
2 chosen in equation (1) these have polymer-lattice Epl or polymer-polymer (contact) E ,  
bond energies corresponding to the Boltmann weights at temperature T 

exp(-Epr/T) = c exp(-E,,/T) = 1. (2) 

Thus Epp = 0 and, if T is measured in units of Epl, one has the correspondence 
T = -(loge)-'; hence c + 1 is the high-temperature and c + 0 the low-temperature 
limit. So far all the geometrical construction has been discrete but it turns out that H grows 
as - ( I /& and therefore there exists a g = g, at which large-area A surfaces become 
critical and a universal continuum limit can be established. 
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3. Matrix model 

In the infinite temperame case c = 1. this problem w3s mapped onto a random matrix 
model by Duplantier and Kostov [9].  In order to analyse 0 < c < 1 a more general random 
matrix model will be employed which is, however, still solvable. Let us first recall how the 
random surfaces described earlier can be generated from random matricest. Consider the 
partition function 

d$ii n d$2, d$$ exp Tr --$' + -$4 ( [ ;  4 N  I> (3) 

where Q is an N x N Hermitian matrix with elements Qi,. If one expands the integrand 
in g and performs the Gaussian integrals, the expansion can be given a diagrammatic 
representation (figure 2) of quartic vertices tied together by the propogators to form a 
closed graph, all possible graphs with A vertices contributing at order g A .  Note that we are 
interested only in connected graphs, so we should take the logarithm of z. Because Q is an 
N x N matrix each graph is also weighted by a power of N .  One finds 

where the sum is over all connected closed graphs G of coordination number four. Q is the 
number of loops in the graph, while C(G) is the order of the symmetry group of G. These 
graphs, shown by full lines in figure 2, are the dual graphs corresponding to the squares 
glued along links described earlier without any restriction on topology of the closed surface 
formed. The genus G of this surface is defined by Euler's relation U - A = 2 - 2G where 
A is the number of square faces and U the number of vertices in the random square graph 
8. Since by duality Q = U and C(@ = C(G), the weight for a genus G surface is N2-2G. 
As N + 00, surfaces of spherical topology G = 0 dominate and this is the limit which 
will always concern us in this paper. 

In order to introduce interacting polymers on the surfaces consider two random 
Hermitian N x N  matrices Q and @ each with the previous measure (3) and the following 
partition function 

The $ matrix generates random surfaces as before, but I) introduces a new vertex type $zc 
with coordination number 2L and two new propogators in addition to Q2. which tie together 
vertices of the same type (using Q2 or +') or of different types (using +Q) (figure 3(i)). 
The propogator weights are 

The weights have been chosen so that in any graph the factors of (1 -c2)  cancel completely 
between the propogators and vertices, so Q4 vertices are weighted by g and @2L by r L .  
Forming the dual graphs once again, the @zL vertices are interpreted as holes in the surface 
of length 2L. The final step in visualizing the polymers is to use the trick in 191 whereby 
each whole of length 2L in  the dual graph is sewn up starting at a given point on the edge 
of the hole to form a seam (polymer) of length L, illustrated in figure 3(ii). The extra factor 
of L in the weight of a hole is equivalent to the L possible positions of the given point 

i A review of this technique and methohods of solution can be found in [IO] for example. 
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which yield a distinct polymerhface contipration. Note that the propogator $@ acts to 
connect the polymer to the lattice with weight c while the propgator $' acts to connect one 
part of the polymer directly to another part with contact weight one (cf (2)). The N --t 03 

limit of log Z, equation (5), then generates the required partition function 2 (equation (1)) 
on genus zero surfaces. 

- -> 

( i l  l i i l  

Figure 3. (i) A partion of a two-dimensional random square lattice with a hole of length 6 dual 
to the vertex created by $rZL in he particular case L = 3. In the dual graph lines associated 
wih 0 are full while lines associated with $r are chain lines. (ii) Sewing up the hole in the 
random s q m  laltice to form a seam representing a polymer. The seam could begin at 'a', 'b', 
or 'c' to give distinct polymerflanice configurations. The case shown comsponds to sewing 'b' 
to 'f and 'c' to 'e'. 

4. Orthogonal polynomial solution 

The matrix model (5) can be solved in the large-N limit by the method of orthogonal 
polynomials [I 11. Using the decomposition of Hermitian matrices into unitary and diagonal 
matrices, the integration over the unitary matrices can be explicitly performed to leave 

where 

and 

with 4; and @ j  the eigenvalues of @ and $. Introducing polynomials of degree i and j 
with first coefficient normalized to unity: Pi(@) = fl + . . ., e,($) = $1 + . . ., where @ 
and @ are now understood as real variables parametrizing the eigenvalues of the matrices, 
they are defined to be orthogonal under 

(10) 
+m 

d@ d+ e-"(m,t)Pi(+) e,($) = hi8ij. 
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Using this property one can show that [ I  11 
N - I  

log z = constant + C(N - i) log fi (11)  

where f j  = hi/hj-l and the constant is g-independent. P and Q satisfy recursion relations 

(12) 
(13) 

The one for P terminates after L + 1 terms. One’can find a set of equations for r ,  s ,  q ,  t,  
and f which can be solved for f, and thus log Z. The required equations are given by the 
identities 

i = l  

4Pi($) = 9+i i- r;. Pi-{ + si 9 - 3  + . . . 
$ Q j ( $ )  = Q j + l  + q j Q j - l +  f j Q j - S .  

dq5 d$ e-v(43*)P[-, Qi  = 0 (14) 

and their counterparts obtained by exchanging P c) Q and $ .U $. By integrating by parts 
they are explicitly found to be 

. .  

g(l - c2)2 

cri = ji - rJje[i, i - 11 
i = q; - cfi - rJZe[i - i,11 

csi = - - r A 7 Z G e [ i , i - 3 ]  

ct, = - N f i f i - l f i - 2  

where 

In the l a rge4  limit one can define a continuous variable x = i / N  and functions 
fi = N f ( x ) .  ri = Nr(x) ,  qj = N q ( x ) ,  si = N Z s ( x ) ,  and ti = N Z t ( x )  so that the 
previous equations become 

(24) 
(2-5) 
(26) 
(27) 
(28) 
(2% 

Equations (29) and (25) will be redundant in this paper, while substituting equations (27) 
and (24) into equation (28) gives an equation for f 

x = -Cf + - f C - 3 g ( 1 - c 2 ) ( ~ 2 - r f 3 / 2 e [ i , i - i 1 ) - r ~ ~ [ i - 1 , i ] .  C2 (30) 

cq = f - 3g(l - c2)Zfr 

ct = -g(l - c y  f 3  

x = -cf + r - g(1 - C * ) ~ ( ~ S  + 3r2) 

cr = f - rae[i ,  i - 1 1  

x = - c j + q -  r f ie[ i  - 1,il 
cs = -rf3/28[i. i - 31. 
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So far the large-N limit has been taken in order to isolate the random surfaces with 
genus zero, but g is still a free parameter conjugate to the area A. The perturbation series 
of equation (1  1)  in g is actually only convergent for g c g,, which is a reflection of the 
fact that the number of configurations H in equation (1) grows as ( l /gdA. Therefore 
by tuning g -+ g, the infinite-A surfaces become critical in the partition function and a 
universal continuum limit is attained [61 (universal in the sense that one could equally have 
discretized the surfaces with some other type of polygon instead of squares). To identify 
this critical point of the surfaces in the orthogonal polynomial formalism it is expedient 
to set r = 0 (no polymers) and identify the singularity in the solution for f(1) = f of 
equation (30) as g is varied: 

f 3g(l - c2)2f2 
C C2 

1 = -cf+ - - 
yielding 

2c 
1 -c2‘ 

g c - , z  -I fc=- 

As g --t g, it is useful to define a renormalized (physical) area of the surfaces; if 
g = g,(l - pS2), where 6 --t 0 is the link length of squares, p is a renormalized variable 
conjugate to renormalized surface area A = AS2. A plays the role of infrared cutoff on 
the area of continuum surfaces for which the ultraviolet cutoff 6 has now been removed. 
In the continuum limit S + 0, p not only couples to the universal continuum surfaces (A 
finite) but also to the surfaces finite in lattice units A (A - O(6) + 0). The partition 
function (11) will have a part regular in p, usually representing the latter surfaces, and a 
non-analytic part representing the former. The thermodynamic limit is of course the infinite 
area one, A + W. Now at large N one has from equation (1 1) 

log Z = N2 dx (1 - x )  log f ( x )  + constant. (33) l 
The singular behaviour of log Z arises from x -+ 1 so it is appropriate to define scaling 
variables 

f (x )  = fdl - u(z)S). (34) 
Then the first non-vanishing order in 6 in equation (30) occurs at O(S2) giving (at r = 0) 

(35) 

2 ~ = i - ~ a  

U2 = p + z. 
Hence [6] 

log Zr,o = ZO = -N2S5 dz zu + regular 

(36) 
If U is a function of the combination p+z only, as above, then N 2 6 5 ~ ( p )  = -az log Z/ap2 
and it has the interpretation of a ‘susceptibility’. In the presence of polymers equation (35) 
is modified by a r-term; in this paper only the case of a single polymer will be addressed 
in detail. 

Jldm 
= N265$~5r2 +regular. 

5. Single polymer collapse 

For a single polymer equation (35) is still appropriate and one studies the connected 
expectation value of Tr(eZL) in this theory, i.e. logZ expanded to first order in r, 
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log Z = Z,+ rZI  +I . .. In terms of orthonormal polynomials, connected one-point Green’s 
functions of the matrix model are given by 

In order to evaluate the last quantity it is illuminating to introduce raising and lowering 
operators on the orthonormal polynomials defined by 

* = f i a t  + -a 4 -I- -a3 t Jf f ” ’ 2  
(39) 

(40) 

Thus by orthogonality, $2L contributes in (37) only when there are equal numbers of a and 
at in its expansion. Defining Z1 = E:=, Z;, one finds (as always, for N + 00) 

(1 - c2)Zgf =- [ 1 - U S  + O(S2)I 
1 - cz 

,- 6 - - 
where U is given by equation (35) and [ L / 2 ]  indicates greatest integer < L/2 .  This formula 
is the first main result. 

If, as the continuum limit S + 0 is taken, L remains finite, the polymer will appear 
merely as an infinitesimal puncture of length 2L in the surfaces of finite renormalized area 
A. In this case equation (41) reduces to the form 

Z I  = N p z I X ( L , c )  - Y(L,C)US+O(62)1. (42) 

The parts regular in p, including the first term, represent the non-universal contributions 
due to the polymer on finite-A surfaces. The non-analytic part at lowest order in 8 gives 
the scaling behaviour of the puncture operator one-point function on the f ini te4 surfaces 
in the continuum limit 

This is basically aZo/ap (cf equation (36)) since a puncture can be anywhere on the surface 
and therefore measures its area A conjugate to p. Note that the overall power of N occurs 
because Euler’s relation introduced earlier is more generally Y - A = 2 - 2G - h where 
h is the number of holes in the surface, Changing L or c does not change the scaling 
dimensions and there are no singularities of Y (L, c) .  so no phase transitions. 

In order that the polymer remain an extended object on the surfaces of finite A one 
must scale its length as L = 16-*IuD, for some appropriate exponent uD. D is understood 
as some intrinsic fractal dimension of the lattice which would be two if the lattice were 
regular, while v is the usual mean square size exponent of a polymer. In order to find vD, 
and in particular its dependence upon c. one must evaluate the large-L behaviour of the 
sum (41). This is not straightforward because the terms in the sum alternate in sign. For 

ZI =regular+ $ N S 3 Y ( L , c ) g 3 / Z .  (43) 
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0 . '  0 . 6  0.8 

Figure 4. The induced free energy per unit length U A  estimated f" equarions (41) and (46) 
at L = 150. Broken tines are the leading pemu6ative resulu, around e = 1 and e = 4% I for 
L = m. 

the case c = 1 [9], which corresponds to infinite temperature, only the first term survives, 
leading to the result uD = 1 and 

2L(2L)!  
(L!)* z; - exp(-ul) +regular 

in the continuum limit S -+ 0. The large-l behaviour of the prefactor is - Z L / a ,  showing 
the characteristic (non-universal) exponential growth of the number of configurations, and 
that for Z I  the part non-analytic in /A grows as - ZL/LSl2. The exponent S/2  is expected 
to be universal and one of the main objectives is to find its dependence upon c. Implicitly 
we are therefore assuming that this characteristic form of the large4 behaviour persists as 
c is reduced from one, i.e. when L = 1/6 

(45) 
where G ci and a is universal. As always, by universal it is meant independent 
of the form of discretization of the surface, rather than independent of the microscopic 
definition of contact interactions. The author has not managed to derive the asymptotic 
form (45) except in the neighbourhoods of c = 1 and c = ~6 - 1, which will be discussed 
shortly. 

It is, however, useful for orientation to first investigate the exact formula (41) 
numerically at large but finite L and fit it to the form (45). Evaluation of (41) for increasing 
L indeed confirms exponential growth with L for general c .  Figure 4 plots h(c) obtained 
from 

Z' 1 -  - G(L, c)[e-*(c)s'+o(') + o(constant-0'6-'))1 

where Z ;  is evaluated for = 15@-corrections to the RHS above are O(6) - O ( l / L ) .  
b(c) does not depend upon /A and so represents some short-distance lattice artifacts. On 
the other hand uh is expected to be universal and represents an induced free energy per 
unit length of the polymer due to fluctuations of the finite4 surfaces?; it is non-analytic 

t Note lhal it is lhe presence of an extra dimensionful parameter p on the Rucfuating lauice which enables one 
to extract a universal pan from the free energy of the polymer. which in the case of a dilute polymer, is l i e  a 
boundary free energy. 
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in f i  from equation (35). The behaviour of h(c) thus governs the interesting geometrical 
properties of the polymer. In particular, figure 4 seems to show a transition to Z(c) = 0 
at c - 0.4, which will be verified shortly. Physically, as c is reduced the polymer favours 
polymer-polymer rather than polymer-lattice bonds and the induced free energy h falls. 
Below a certain c, FJ 0.4 the polymer collapses entirely and is only connected into the 
surface by a small number of polymer-lattice bonds. This is the coil-to-globule transition 
on fluctuatipg random surfaces. The polymer-polymer contacts also induce free energy per 
unit length but at a lower order in 6, and it will be necessary to choose a different scaling 
exponent v D  in order to see this contribution ne& c = cc. 

In order to find c, exactly, determine the exponents a and uD, and the details of the 
purported phase h-ansition, it is useful to make the replacements a -+ e’p ,  at --+ e-ip in @ 
(39), enforcing the cancellation of a’s and at’s by integrating over p thus (cf equations (37) 
and (39)) 

As the continuum h i t  6 --+ 0, L + 00, is approached one would like the integrand to 
exponentiate simply using the property (1 - ,9/L)2L 4 e-zfl (6 finite). To see why this does 
not happen in general it is expedient to expand @ in 8 and p, using previous definitions for 
f, q ,  and t in terms of scaling variables U and p; 

+apip3 + asupZ8 + aloiup’d + allp4 + ...I. 
The coefficients ai(c) are easily computed, in particular 

a1 = 3 ( 3  + 5c + 3c2 + c3) 

(48) 

a2 = 1 - 3 c + c 2 + c 3  
a3 = ;(I - c - 3 2  -2) 
. . . ... etc. 

This and subsequent algebraic computations were done by hand and checked by computer. 
Since a? # 0 in general, this gives the ,9 above an (infinite) imaginary part and the resultant 
oscillatory behaviour means that one must keep all orders of the expansion in p (48) in 
order to even begin to evaluate the integral (47). This problem will turn out to be obviated 
if (12 = 0 for some value of c since one can then easily separate o f f  the contribution to 
the p-integral non-analytic in f i .  coming from the p - O(81/”D) region. In the interval 
0 < c < 1, a2 has roots at c = 1 and c = f i  - I ,  the latter shortly being interpreted as the 
collapse temperature cc. The strategy now is to expand c about these two roots. 

First consider the neighbourhood of c = 1 (high temperature limit). In order to reproduce 
the c = 1 solution [9] one finds that for L = I j S  (vD = 2) the contribution of the integral 
(47) non-analytic in p comes from the region p - o(&). Writing c = 1 - E  for small E ,  
a2 = O ( E )  and working permrbatively to lowest order in E yields 
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where ellipses indicate either O(S3l2) terms. which do not survive the continuum limit, or 
terms which renormalize the displayed coefficients in (52) at 0(c2) .  Therefore 

= &[s + O ( < ) ~ L  exp (54) 

in the continuum limit 6 + 0, where the integral 

has been used, valid since p& - O(E)  << 1 by hypothesis. The same result can also be 
derived by expanding the formula (41) in E .  Equation (54) is of the form (45) with a A that 
correctly matches onto the L = 150 curve of figure 4 near c = 1. The partition function 
itself would then be 

Z I  = N6’L dzZi (56) 
m 

using equation (35). Largearea A + M corresponds to p + 0, in which case the power 
exponent is a = -512. 

Fortunately there is one other value of c where a2 vanishes, given by c = f i  - 1; a3 
also vanishes at this point. Writing c = f i  - 1 + E for small c 

a2 = 4(1 - &)t + ( 3 ~ 5  - 2)c2 + e3 + O(c4) 

All other ai’s in (48) are non-vanishing at c = & - 1 and it is straightforward to evaluate 
their <-expansions and substitute in (48) once again. The result to lowest non-zero order 
in E ,  which requires one to consider all terms displayed in equation (48), is after a tedious 
calculation 

where ellipses are O(8’’’) terms which do not contribute to the continuum limit or terms 
which renormalize the displayed coefficients beyond the leading non-zero order in E .  
2a4/a1 = 9 + O ( E )  while a to lowest order in E is given by 

Numerically linq,oa 
Performing the jj-integral and using (35) the partition function is then 

35. Once again the appropriate scaling behaviour was L = 116. 

(60) 21 E c o n ~ t a n t ~ N 6 ~ ’ ~ -  lm dy e-‘<’fi’ + regular 

(U = fi)  which is again of the form (54) with 
A = + 0k4). 
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The calculation for large but finite L shown in figure 4 approaches this limiting behaviour 
with increasing L. At e = 0 there is a collapse transition because as A + 0 

(62) 
which is of the same form as the puncture operator one-point function (42)-the polymer 
has collapsed to a point. Since h.,@ represents the (non-analytic part of the) free energy 
per unit length of the polymer due to its connections into the lattice, its vanishing (61) can 
be interpreted as a third-order collapse hansition if h is identically zero for c < f i  - 1. 
(This is consistent with the evaluation of the exact result (41) for L = 150 in figure 4.) 
For negative E the integral for the partition function (60) is not convergent. This is because 
the higher orders in 6 have been neglected, i.e. there are corrections to the argument 
of the exponential integrand ly8,  Iy3/262, etc which become important at y - 0(l/S2),  
contributing to the regular part. In terms of the discrete variable used earlier, i = Nx, the 
sum ZI = E,",, Zi no longer has a singular part in I.L coming from the finite-i region but 
only the regular part coming from i - O(N). In fact the result of the y-integral becomes, 
to leading order in 6 ,  some pindependent constant since it is insensitive to the lower limit 
and p enters explicitly in the argument of the exponential only at lower order in 6 (terms 
like lp6,  

In order to make the polymer an extended object once again when c < a- 1 a different 
exponent uD must be chosen. Consider first the collapse point itself, c = z/z - I .  The 
order U term in @ (48) vanishes and one must consider the next order in 6, that is p and 
U* terms, which gives 

Zl + regular + fN6512constantLh~p3~ 

. , .). Therefore h = 0 for c = f i  - I + E ,  perturbatively in e < 0. 

Here L = 116' ( U D  = 1) has been chosen to pick up the lower-order terms p and u2 in the 
continuum limit and p = S(p - ip1.h) has been rescaled accordingly; ellipses are higher 
orders in 6 .  Then 

e-Pl12 
= + o n s t a n t ' ~ 6 ~ F  +regular. (64) 

The finite-i region now also gives something analytic in M,  but in this case nevertheless 
represents fmile-d surfaces. The A = 0 sur facesA - O(6') more precisely-are 
characterized by the fact that a finite number of derivatives with respect to can remove 
their contribution, since each derivative brings down a factor of A. The first term in (64) 
cannot be removed by differentiating. It can be interpreted as due to surfaces dense with 
polymer whose area is proportional to the polymer length, which is now conjugate to p; 
for small I differentiating does remove its contribution. The result U = -3/2 and uD = 1 
agrees with a dense phase of polymers constructed in 191. This is discussed futher in the 
next section. 

For c < f i  - 1 the author has not been able arrive at a wholely satisfactory quantitative 
understanding of a scaling limit with fixed polymer length L. It was shown above that ZI 
no longer has an obvious universal contribution from the finite-i region. The precursor to 
this was already seen at c = 
but nonetheless had an interpretation in terms of scaling surfaces and polymer. The origin 
of the difficulty seems to lie in the fact of working with a polymer of fixed length L which 
is dense on the surface. To resolve ambiguity and identify a part singular in p it turns out 

- 1 where the finite-i region gave something regular in 
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to be necessary to sum over L with respect to a monomer fugacity K. This will be done 
in the next section in the more general context of scaling operator two-point functions. 

One notes, however, that the polymer in the low-temperature phase should to be in an 
ultra-compact state due to the allowance of multiple occupation of links in the model. This 
is highlighted in the low-temperature expansion; expanding (41) about c = 0, only a finite 
number of terms survive to given order of c. The result is 

These terms have a clear geometrical meaning. At O(co) the term (2L!) / (L!)2 - 2 2 L / f i  
corresponds to the number of ways of folding the polymer so that it has no connections 
into the surface at all. Each subsequent power of c2L corresponds to breaking a polymer- 
polymer bond, of which there are L, and inserting the dangling bonds into the dual graph 
on a 9’ propogator. For example, order cz corresponds to folding the polymer entirely onto 
one of the links of the square lattice: equivalent in the dual graph to insertion of a Tr@ 
puncture operator times a combinatorial factor to account for the number of ways of pairing 
the 2L - 2 other bonds of the polymer. Indeed,  TI$^) = 1 - 2uS + O(S2), where the 
leading non-analytic term corresponds to two punctures on the universal finited surfaces, 
one from the polymer and the other from a/ap (compare with equation (42)). 

Figure 5. 
particular case s = 3. 

A watermelon nehvork wntributing to the two-point function (OSOS) for the 

6. Scaling operators 

In order to better appreciate the geometrical implications of the calculations just performed 
and convert the results to the corresponding ones on a fixed regular lattice it is expedient 
to derive the scaling dimensions of the usual polymer ‘star’ operators. These are the 
operators [OS) which act as sources for S polymer lies; the two-point functions (OSOS) 
are watermelon networks illustrated in .figure 5. These configurations are most simply 
discussed by introducing a variable K conjugate to the total length L of all polymers in 
the configuration and, in the case of a fluctuating lattice, the operators should be integrated 
over the lattice because there is no translational invariance. Thus one is considering the 
correlators 
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where Zs(L) is the partition function for the S-line watermelon network with fixed total 
length L of all the polymers. In particular for S = 1 one has Z' = ZI calculated in the 
previous section. In a dilute phase of polymers one also expects Z? = 2, (36) since the 
polymers have negligible backreaction on the background lattice. In a dense (uD < 1) 
phase, however, it is incorrect to normalize correlation functions with ZO since the dense 
polymer alters significantly the background geometry. In general one should normalize by 
a fluctuating lattice partition function with some scaling exponent Zo - (82)2-yiv which 
takes into account any backreaction. Fortunately it can be determined by an independent 
argument 131. The 'gravitational' scaling dimension AS of 0, is given by the dependence 
on the lattice spacing 

(67) 

A z 1 and A < 1 imply irrelevance and relevance in the continuum limit respectively. 
These dimensions are related to the conformal weights A(') of operators in a conformal 
field theory in the plane [I21 of central charge c by the Kpz formula [73 

( 1 os 1 os) - ( w 9 - 2 .  

A(O)=A (68) 

,. 
In general the exponent ysu does not determine c uniquely unless some further information 
is available. For the problem studied in this paper the charateristic behaviour of A"), 
that is whether it is negative, zero, relevant, marginal or irrelevant, follows that of the 
corresponding A. 

The exponent AI is related to the power exponent in the single polymer partition function 
Z1 - ebLL" 

(70) 
a + l  
v D  

2A1 = ySm - -. 
Similarly A:') is related to the corresponding power exponent in the growth of the single 
polymer partition function in the plane, conventionally written Lv-'fiL. by y / v  = 2-4AY) 
where the latter U is the usual meansquare-size exponent RZ Lzv. Since 0 2  represents 
marking a point on the polymer, it couples to the length L and hence there exists are relation 
to v D given by 191 

(71) 
1 

v D = -  
1 - A2 

with a similar relation in the plane on setting D = 2. The higher even operators 02 for 
n > 1 represent a contact between n different parts of the polymer simultaneously. 

To illustrate the calculation of the star-operator two-point functions (66) consider the 
case S = 2. The relevant configurations are those of a closed loop of polymer with two 
marked points on the polymer. This constructed from two pieces of surface SI S2 (figure 6), 
each with disc topology and the same boundary length L. The polymer is formed by first 
pinning together the two boundaries at (arbitrary) given points PI and PZ on the boundary 
of SI and Sz respectively, then sewing the disc boundaries together. Finally one chooses 
another (arbitrary)given point Ps on theseam. The total amplitude for these configurations is 
Z2(L) = LZl(L/2)Zl(L/2), that is two independent disc amplitudes, one with two marked 
points the other with one marked point on the boundary. Using the integral representations 
(47) and (56) one therefore has 
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t i l  llil 

F i g m  6. Constructing the configurations contributing to (0202). (i) Surfaces SI and Sz 
have disc topology and the same boundary length (&e figure is not to scale). (ii) Sewing Ihe 
boundaries together gives a distinct polymer/surface configuration for each choice of points 
PI. P2.4. 

Generalizing the construction to sewing S discs together to form the watermelon network 
(figure 5 )  gives 

where hereafter the rescaling -+ $ is used for convenience. By hypothesis this 
scales as (62)2A~-Y*. The critical regime for the number of monomers is achieved by tuning 
K = Kc(l - 262/YDu) where I/& is the critical (maximal) value of $ which makes the 
denominators vanish in (73) to lowest order in 6. This singular behaviour of (73) allows 
one to read off the scaling dimension. It will now be computed for the various phases in 
turn. 

(i) High-temperature phase.. 
From the analysis of the previous section (52) and (58), at least for the limits c + 1 

and c + (a - l)+, the scaling behaviour p - & and z - Sz is appropriate and each 
denominator in (73) is O(p2, m, U ) .  By power countin,. one has 

(74) 
as occurs at infinite temperature [9]. From (71) and uD = 2 one deduces ysu = -1/2, 
which is known to be consistent with a conformal field theory central charge c = 0. Hence 
from the dimensions in the plane (68) Ar’ = (9s’ - 4)/96 one finds the usual dilute phase 
of self-avoiding random walks. It seems logical to assume that this behaviour is valid for 
the entire range 1 > c f i  - 1. Note that AI is positive, meaning that the two ends of 
a single polymer attract, while A2 is relevant but positive, charateristic of a dilute regime. 
The contact operators Ob, n > 1, are all irrelevant. 

3 2As - ysu 7s 

(ii) Collapse temperature. 
At c = - 1 the scaling behaviour p * 6 and z - 62 was appropriate and the 

denominators are O(pz,  z ,  p, U ) .  By power counting one finds 

2 A s = y s + $ S  (75) 
while VD = 1 implies yso = -1 consistent with the c = -2 conformal field theory at 
the end of the unitary minimal series (though it is not unitary). The scaling dimensions 
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A?) = (S2 -4)/16 are those of the usual dense phase of self-avoiding random walks in the 
plane for which R2 - L [PI. 01 has negative dimension since the dense polymer screens 
the endpoints causing them to repel, while 0 2  is of dimension zero, like the identity operator 
characteristic of a dense phase. Of the contact operators, 0 4  is relevant and 0 6  marginal. 

(iii) Low-temperature phase. 
Consider perturbing c = f i  - 1 + E for small E < 0 now. Starting with S = I one 

recalls from (60) that the z-integral does not converge unless higher powers of U and p 
in the expansion (48) are taken into account, in which case there is some saddle point at 
z - O(l/S2) corresponding to values of the discrete variable i - O ( N ) .  This is quite 
odd behaviour but one can formally proceed perturbatively in E .  The first corrections have 
already been worked out in the exponent of (63). Collecting all the significant terms at 
leading non-zero order in E 

(76) 
where the constant part @O = 1 +O(E’). If E c 0 however, al@o is now longer the maximal 
value of + (which determines &). To leading order in E, the maximal value now occurs 
not for z + 0 but for z = zc - 0(e6/Sz) (the term of order U’ is now comparable to 
the E ~ U  term). The ellipses in (76) correspond to higher-order terms in 6 and E taking this 
fact into account. In detail, perturbing about this maximum as z = zc + c3ifS one finds 
zr = mZc6/962 and Gaussian fluctuations 

@ = a,[@@ - 6Z‘YD9jZ -  YE^-^ + (p - 3(p + i)/2)S2 + . . 

The scaling laws for ,E and i in the last expression have been fixed to pick up the lowest 
order in p, and vD = 1 as a result. The singuIar part of the S = I correlator is then 

(78) 

(79) 

1 

a + 9 , ~ 2 -  p +  3 Zo( / 61 / U t )  - E’ l r d j d i  

- E  3 l o g ( U - ~ )  u - p + o .  

Similarly for S z 1 one has singular multiple integrals 

(80) 

- P l o g ( 0  - p )  U - p + 0. (81) 
This implies As = 0 for all S and yEtr = 0. Logarithmic scaling violations are known 

to occur in the c = 1 conformal field theory of a free scalar field when coupled to two- 
dimensional quantum gravity precisely because of the fluctuating metric tensor. However, 
there is no obvious reason to expect this assignment of ceneal charge in the present case; 
ystr = 0 does not determine it uniquely. In fact the KPZ relation (68) would imply A?) = 0 
independent of c. This means that all operators scale like the identity operator. In particular 
Aio) = 0 means that the polymer endpoints move freely, the repulsion due to dense polymer 
being compensated by the attraction due to the tendency of the polymer to collapse. The 
result Ag)  = 0, n t 1, would seem to imply a dense regime for both monomers and contacts 
between monomers-the lattice is filled many times by the polymer. To this leading order 
in E at least the multiple covering of the lattice by the polymer is not enough to change the 
v-exponent from its usual dense-phase value R2 - L however. It seems plausible that the 
behaviour to first order in E should extend a finite distance into the low-temperature phase 
but this remains a conjecture. 

1 

20 - 2 p  + 9jg + 3 + SF: + 9 . . .  
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To summarize the results, using random matrices to solve the polymer folding model on 
a fluctuating two-dimensional lattice and then translating the results to the regular lattice 
using Kpz scaling, a collapse transition was found from a dilute to dense regime. On the 
fluctuating lattice the transition was third order. Although there are no rigorous bounds, all 
known examples of bulk phase bansitions show up with lower order on the regular lattice; 
the collapse transition of a dilute polymer in two dimensions is really like a boundary 
phase transition but nevertheless one might guess that it is first or second order. While the 
high-temperature phase and collapse point correspond to the usual dilute and dense phases 
of self-avoiding walks in the plane respectively, the understanding of the low-temperature 
phase is still incomplete. Some arguments were given to suggest an ultra-compact regime in 
which the polymer covers the lattice many times due to the possibility of multiple occupation 
of links. This latter feature is a particularly unphysical aspect of the model as regards real 
polymers and results in a different universality class of collapse transition from models 
where multiple occupation of links is forbidden. The reformulation of such models in terms 
of percolating clusters [3] showed a @-point with behaviour intermediate between that of 
the standard dilute and dense phases of self-avoiding walks. 

The indirect technique of solving discrete statistical models on fluctuating lattices by 
using random matrices and quantum gravity in order to predict the critical phenomena on 
regular lattices has received little attention before in the literature. While a little circuitous, 
the techniques invloved are relatively straightforward, having been developed by high-energy 
physicists in other contexts. It would be interesting to see how far one could push it in 
the condensed matter context. There are various possible extensions to the present work: 
it is easy to find (but not so easy to solve) random matrix models which forbid multiple 
occupation of links; this paper set up the formalism for a finite polymer fugacity r and 
it would be interesting to study the interplay of inter- and intra-polymer interactions; the 
polymer can also be given more exotic monomer content by using more complicated matrix 
models. These extensions are presently under investigation. 
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Appendix 

Consider the expectation 

((1 - c ’ ) ~  TI[($ + ~ f @ . ) ~ ~ l ) r = o  (1) 
with respect to the potential V(q5, $) (9). Expanding this operator in CY 

T r [ ( q 5 + ~ f @ ) ~ ~ ]  = T1[q5’~ +LY(@’~- ’@ + q 5 z L - 2 @ q 5 + . . . )  
+&+*L-’@ + p - 3 * @ *  + @’L-’**@ + . . .) + . . . + , p * ’ L ]  (2) 

one sees that this represents a co-polymer with random sequencing of monomers of type 
@ and type @, the latter being made out of the same material as the background lattice as 
it were, together with a fugacity CY for the proportion which are type *. The weights of 
V are such that monomen of the same type tend to attract one another while monomers 
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of different types tend to repel. Unfo~tunately this is the opposite situation to that of the 
physically interesting one when monomers are electrically charged for example. but it can 
be solved immediately by the change of variable a@ + 6 = *‘, 6 = 6‘. After some 
rescalings the new potential V(@, 8’) is of the same form as the old one with the change 

(3) 
ffc+ 1 

z/or2+ 1 + k c  
C +  

Therefore (1) can be evaIuated using the results of the paper: in particular there is a collapse 
transition the temperature of which reaches zero when 01’ = -1 +I/(&- 1)2, there being 
no collapse for LY smaller than this value. 
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